Biomass Characterization by SEM-EDX

Climate change concerns and the post COVID world need urgent solutions to develop sustainable societies with better energy, products and services 1.

Biomass could help but its chemical properties must be known in faster ways2.

Our work delivered a faster and reliable method for elemental analyses of biomass with Scanning Electron Microscopy coupled to Energy Dispersive X-Ray Analysis.

1. United Nations (2015). Transforming Our World: the 2030 Agenda for Sustainable Development. [online] United Nations. (Accessed on 10 May 2023).

2. Biswas, B., Krishna, B. B., Kumar, M. K., Sukumaran, R. K. & Bhaskar, T. Chapter 7 – Biomass characterization. in Advanced Biofuel Technologies (eds. Tuli, D., Kasture, S. & Kuila, A.) 151–175 (Elsevier, 2022).

New Challenger for Sustainable Ethanol Production in Industrial Biorefineries

Featured

Nations urgently need to tackle climate change in harmony with a circular economy to accomplish Sustainable Development Goals. Using sustainable biomass for sustainable industrial ethanol production seems attractive. Recently, the outstanding features of the arid plants nopales, aka prickly pear cactus, became headlines. Nopales outcompete algae and other biomasses in many aspects. Nopales are resilient, and climate change sparked their advancing invasion across European countries and other places.

Poster prickly pear cactus ethanol LCA
Poster presented at 7th Green and Sustainable Chemistry Conference, Dresden, Germany.

A sustainable biorefinery for ethanol production from nopales could holistically support promising outlooks on energy transition, water positive activities and food security near cities. However, the environmental impact and energy efficiency of this novel biorefinery for renewable energy under realistic scenarios is unknown. Traditional chemical pretreatments are polluters that can improve through environmental assessment and bio/chemical process design.  

We conducted experiments and assessments of scenarios for cleaner ethanol production from nopales in a biorefinery.  Four scenarios considered two fertilisers, two pretreatments and two operational modes. We conducted life cycle assessment, energy balances and energy efficiency calculations. The most polluting scenario uses fossil fertilisers, acid hydrolysis and neutralization of nopal nutrients, and it resulted in approximately four times the global warming potential of the best scenario.  Organic fertilisers and the use and reuse of ionic liquids with acetone for washing was the most ecofriendly scenario.

We propose a cleaner design showing the lowest impacts in all categories, including Global Warming, Acidification and Eutrophication Potentials and more. Besides, the design used the lowest amount of energy per unit of energy as ethanol fuel. It also has the best energy efficiency since it converted three-fold the amount of spent energy, in the worst scenario, into net energy as ethanol fuel.

Sustainable biorefineries and sustainable biomasses are opportunities in the circular economy while pursuing climate risk mitigation, carbon neutrality and green energy for sustainable development.

Job Biomass Analysis Research Internship

Gallery

RoleCurrent climate change concerns and the post COVID world call for urgent solutions to develop sustainable societies. Nonfood biomass instead of petroleum is an option to produce cleaner biofuels, bioplastics and more.  To achieve some sustainable goals, biomass needs to … Continue reading

Self-funded PhD opportunity on Sustainable fuels and chemicals from sustainable biomass and bioprocessing

Project Description

The UN Sustainable Development Goals, COP26 and more forums worldwide urge for positive action on climate change. Innovative sustainable solutions can help to build a better climate to develop sustainable societies. Nonfood biomass instead of petroleum, coal or controversial food feedstocks can produce cheaper, safer, faster and environmentally friendlier products and services. For instance, advanced biofuels, bioplastics, biooil, sugars, biofertilizers, proteins and foods to cite a few.

Advantageously, this project would use a promising nonfood biomass feedstock adapted through millions of years for growing in extreme conditions close to megacities worldwide. Arid biomass requires far less common inputs like water, energy, machinery, pest control, downstream and upstream processing than microalgae and traditional crops. The challenge is to create sustainable processes for transforming arid biomass into sustainable products and services responsibly.

The PhD project aims at studying biotechnological and chemical engineering strategies to create novel sustainable processes transforming arid biomass into wealth while helping people and the environment in a more responsible way. Products and services could be used in energy, feed and food production, agriculture and farming.

An understanding of bioprocessing, bio/chemical process engineering, biomass valorisation are foundations for creating viable strategies. Strong laboratory skills in the aforementioned subjects are essential. Basic design and expression of recombinant enzymes and/or molecular cloning skills are desirable, not essential, but to be learned and applied along with the project.

Applicants must have achieved or be expected to achieve a 1st class or 2:1 honours degree or equivalent in a related discipline in Chemical/Biochemical/Environmental Engineering, Biotechnology or equivalent or have relevant industrial experience…

Continue reading: www.findaphd.com/phds/project/sustainable-fuels-and-chemicals-from-sustainable-biomass-and-bioprocessing/?p145108

Bioenergy from an automatic small facility

Converting waste into bioenergy is a hot topic around the world. Several are the reasons for doing this, ranging from adding value to waste, reducing carbon footprint and air pollutants while producing valuable products like fertilisers and more.

New research unveils the evaluation of the performance on food waste conversion into bioenergy in a decentralised facility, where biological treatment by natural microbes converts food waste into biomass, a process known as anaerobic digestion.

The evaluation not only considers energy efficiency of the entire process but also the removal of organic matter and its conversion into valuable products, that otherwise would end up in the environment.

Results demonstrated that small scale digestion units are technical suitable for biogas production at acceptable level to consider it valuable.

The system could produce its own electricity at an efficiency of up to 0.95% when the yield of methane is 360 litres per kilogram of volatile solids in the food waste fed to the digester, representing a removal of 93% of these solids in the feed stream.

Process stability is normally a problem but in this case high process stability increased thanks to the innovative addiction of an auxiliary storage system.

There were some operation conditions that could compromise the good use of energy to heat up equipment in various stages, the researchers reported*.

*Download from ELSEVIER (last day: 23 Oct 2020). González, R. et al. (2020) ‘Performance evaluation of a small-scale digester for achieving decentralised management of waste’, Waste Management, 118, pp. 99–109. doi: https://doi.org/10.1016/j.wasman.2020.08.020.