Biomass Characterization by SEM-EDX

Climate change concerns and the post COVID world need urgent solutions to develop sustainable societies with better energy, products and services 1.

Biomass could help but its chemical properties must be known in faster ways2.

Our work delivered a faster and reliable method for elemental analyses of biomass with Scanning Electron Microscopy coupled to Energy Dispersive X-Ray Analysis.

1. United Nations (2015). Transforming Our World: the 2030 Agenda for Sustainable Development. [online] United Nations. (Accessed on 10 May 2023).

2. Biswas, B., Krishna, B. B., Kumar, M. K., Sukumaran, R. K. & Bhaskar, T. Chapter 7 – Biomass characterization. in Advanced Biofuel Technologies (eds. Tuli, D., Kasture, S. & Kuila, A.) 151–175 (Elsevier, 2022).

Self-funded PhD opportunity on Sustainable fuels and chemicals from sustainable biomass and bioprocessing

Project Description

The UN Sustainable Development Goals, COP26 and more forums worldwide urge for positive action on climate change. Innovative sustainable solutions can help to build a better climate to develop sustainable societies. Nonfood biomass instead of petroleum, coal or controversial food feedstocks can produce cheaper, safer, faster and environmentally friendlier products and services. For instance, advanced biofuels, bioplastics, biooil, sugars, biofertilizers, proteins and foods to cite a few.

Advantageously, this project would use a promising nonfood biomass feedstock adapted through millions of years for growing in extreme conditions close to megacities worldwide. Arid biomass requires far less common inputs like water, energy, machinery, pest control, downstream and upstream processing than microalgae and traditional crops. The challenge is to create sustainable processes for transforming arid biomass into sustainable products and services responsibly.

The PhD project aims at studying biotechnological and chemical engineering strategies to create novel sustainable processes transforming arid biomass into wealth while helping people and the environment in a more responsible way. Products and services could be used in energy, feed and food production, agriculture and farming.

An understanding of bioprocessing, bio/chemical process engineering, biomass valorisation are foundations for creating viable strategies. Strong laboratory skills in the aforementioned subjects are essential. Basic design and expression of recombinant enzymes and/or molecular cloning skills are desirable, not essential, but to be learned and applied along with the project.

Applicants must have achieved or be expected to achieve a 1st class or 2:1 honours degree or equivalent in a related discipline in Chemical/Biochemical/Environmental Engineering, Biotechnology or equivalent or have relevant industrial experience…

Continue reading: www.findaphd.com/phds/project/sustainable-fuels-and-chemicals-from-sustainable-biomass-and-bioprocessing/?p145108

Bioenergy from an automatic small facility

Converting waste into bioenergy is a hot topic around the world. Several are the reasons for doing this, ranging from adding value to waste, reducing carbon footprint and air pollutants while producing valuable products like fertilisers and more.

New research unveils the evaluation of the performance on food waste conversion into bioenergy in a decentralised facility, where biological treatment by natural microbes converts food waste into biomass, a process known as anaerobic digestion.

The evaluation not only considers energy efficiency of the entire process but also the removal of organic matter and its conversion into valuable products, that otherwise would end up in the environment.

Results demonstrated that small scale digestion units are technical suitable for biogas production at acceptable level to consider it valuable.

The system could produce its own electricity at an efficiency of up to 0.95% when the yield of methane is 360 litres per kilogram of volatile solids in the food waste fed to the digester, representing a removal of 93% of these solids in the feed stream.

Process stability is normally a problem but in this case high process stability increased thanks to the innovative addiction of an auxiliary storage system.

There were some operation conditions that could compromise the good use of energy to heat up equipment in various stages, the researchers reported*.

*Download from ELSEVIER (last day: 23 Oct 2020). González, R. et al. (2020) ‘Performance evaluation of a small-scale digester for achieving decentralised management of waste’, Waste Management, 118, pp. 99–109. doi: https://doi.org/10.1016/j.wasman.2020.08.020.

New process for commercial chemicals from biomass

Featured

Taking an environmentally friendly idea from the lab and making it available to the public is not a straightforward matter.  But hopes open, as shown by this novel process for adding value to algae residue by producing more microbial oil in additional steps.